

New Models of Collaborations with Academia to foster

Translational Clinical Research, the Key to Personalised Healthcare in Practice

Exploratory Clinical Development World Europe Conference 2012 London, May 23, 2012

Andreas Wallnoefer Global Head of Roche Pharma Research & Early Development (pRED)

Key Technologies that have increased the Body of Knowledge for Drug Discovery

The advent of Personalised Healthcare (PHC)

- **Translational Research** is at the core to enable PHC
- New technologies open new opportunities to translate the progress in basic science into the clinical setting
- Innovation is driven by a diversity of approaches
- New models of industry/academia collaborations catalyze the translation of basic science progress into the clinical setting

Better Understanding of Disease Mechanisms

New & Established Technologies

Fitting Treatments to Patients: Personalized Healthcare

Key steps to bringing new value for better, more predictable medicines

- Understand heterogeneity of diseases
- **2** Discover and develop relevant biomarkers

3 Stratify patients with diagnostic tests

Build evidence for better benefit-risk ratio

Agenda

The future - Integration of molecular diagnostics with targeted therapies

Innovate R&D - New models of partnership with academia

Conclusions

Understanding the molecular mechanisms of disease: Growth factor pathways in the heartland

Roche

B-Raf mutations stimulate cell growth 40-60% of melanoma patients have V600 mutation

Zelboraf[®] (Vemurafenib) inhibits mutant B-Raf signaling

About 50% of BRAF V600 mutated patients respond to vemurafenib...

Before initiation of vemurafenib

15 weeks on vemurafenib

Vemurafenib in metastatic melanoma patients *Mutated BRAF vs non- mutated BRAF patients*

...**Relapse occurs** *Case study*

Escape from B-Raf inhibition may be through activating C-Raf

MEK inhibition may be useful in **B-Raf** escape tumors

Efficacy of MEK inhibitor in Combination with Vemurafenib B-Raf kinase Inhibition in relapsing Patients

Agenda

PHC in practice – the Zelboraf [®] story

The future - Integration of molecular diagnostics with targeted therapies

Innovate R&D - New models of partnership with academia

Conclusions

Where our science is taking us in oncology Understand the patient and their disease to effect cure

Dysregulated cell signaling

interaction

Tumour-stroma

Paradigm 1

Cancer cell directed targets

- e.g. Zelboraf
- Relapse highly probable, requires combinations, e.g. Zelboraf plus MEKi

Paradigm 2

Microenvironment modulation

• Antiangiogenesis

Paradigm 3 Engage host immune response

 Antibody engineering, activation of NK cells

Cure requires a multi-paradigm approach

Changing paradigms in healthcare

Example in cancer therapy

biology

discoveries

of the '80s

with targeted

for integrated

cancer care

therapies

Neuroscience – the next frontier to deliver new tailored medicines to patients

CiD

3.0

α-Synuclein

Aβ-degrading – enzyme

ApoE4

Neurofibrillary tangles Roche

Gantenerumab – Alzheimer's disease *Opportunity to be first in disease for prodromal AD with Phase 2/3*

Demonstrated plaque clearance in human brain

Treatment before conversion to dementia

Gantenerumab data from Alzheimer's patients

- Molecular BMs (CSF Aβ and Tau) enable early diagnosis and treatment
- Dosing based on ApoE4 phenotype

Evolution of R&D methodology in Psychiatry

Targeting brain circuits to treat specific symptom domains

Focus on disease understanding at the level of **neural circuitry** instead of pure phenomenology/behavior, leveraging understanding of genetics, biomarkers and imaging modalities

Targeting synapses and circuits for therapeutics

Roche

The bridge between genes and behavior

The example of Fragile X Syndrome *A genetic condition of Autism*

- Most common genetic cause of autism
- 1:4000 males, 1:8000 females
- Striking psychiatric phenotype, additional physical abnormalities
- Caused by triplet repeat expansion in 5'UTR of FMR1 gene (leads to methylation and silencing)
- No approved pharmacotherapy high medical need
- Established molecular pathophysiology with a key modulatory role of mGlu5 receptors
- **PHC program** with diagnostic and response prediction BMs

Agenda

PHC in practice – the Zelboraf® story

The future - Integration of molecular diagnostics with targeted therapies

Innovate R&D - New models of partnership with academia

Conclusions

Roche is committed to foster new models for academic collaboration

- Innovation comes from diversity of approach and from bringing different disciplines together to progress science through translational medicine.
 - In today's leading academic centers, different groups are working together often across multiple academic institutions.
- There are new opportunities and dynamics in the area of translational clinical research and PHC.
 - Opportunities for innovation in area with shared research interest and research focus that benefits the academic and the Pharma partner
 - Different models ranging from single center collaboration to multi-institute network to industry/academia translational research "hub"

pRED External Innovation Network

Complementing our capabilities and amplifying our ability to innovate

Technology Partnerships

Harvard

iPSC (Stem Cells)

PTC Therapeutics

Advanced treatment options for Spinal Muscular Atrophy

Baylor

Therapeutic vaccines

Geneva University

Proteomics and pathway analysis

Yissum

- Yissum
- Novel pathways, β-cell Stem Cells discovery, CV risk biomarkers

Mt Sinai

Novel screening approaches in Virology

BAYLOR

Singapore

Network of 26 academic partner institutes, ٠ several programs e.g. angiogenesis

Virtual R&D unit with financial reimbursements .

Netherlands Imaging Hub

Collaborative Hub of 3 world-class academic imaging sites

French R&D Institute

Translational Hubs

Access to academic innovation network with • positive impact on key European affiliate

Institut Roche de Recherche & Médecine Translationn

Montreal Heart Institute

Swiss University Network

Basel, neuroscience cognition research • & ETH Zurich, joint Rx/Dx hub

Cardiovascular centre of excellence

Singapore Translational Medicine (TM) Hub *Proof of Concept of a new collaborative model has been achieved*

What we set out to do:

- Provide a platform to interact and collaborate sustainably with academic partners
- Synergise on infrastructure & capabilities
- Broaden portfolio
- Enhance flexibility
- Remove hurdles for Roche scientists to work with academia and vice versa and reap benefits
- Create and deliver mutual benefits to collaborative scientific innovation

Roche

Summary and Conclusions

- Translational clinical research is essential to implement Personalized Healthcare (PHC) for better and more predictable medicines
- New technologies are available and enable the translation of the progress in basic science into the clinic
- PHC is reality and opens great opportunities for better medicines for patients suffering from diseases with no tailored effective treatments
- Roche fosters new models for innovation and collaborations with Academic partner in areas of joint research interest and expertise

"If it were not for the great variability among individuals, medicine might be a science, not an art."

Sir William Osler

The Principles and Practice of Medicine, 1892

We Innovate Healthcare